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Abstract

When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests.

However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for

complex experimental designs and analyses, such as factorial designs and multiple regression analyses, and limited

information about the properties of these tests for realistic data conditions. Efforts to remedy this deficiency have begun

with the introduction of general linear model-based nonparametric tests. The results of a computer simulation of the

properties of several of these tests in hierarchial regression analysis indicated that, on balance, the top-performing test for the

nonnormal distributions studied was the McKean-Hettmansperger F-test using a confidence interval estimate of the scale

parameter r . The Serlin-Harwell aligned-rank chi-square test performed almost as well, which, combined with the fact that

it is easier to compute, makes it an attractive competitor to the McKean-Hettmansperger test.
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Educational researchers commonly examine their data for evidence of problems, nonnormality for example, that can

threaten statistical conclusion validity. When scores are independently and identically (normally)-distributed with common

variance o-2, parametric tests are optimal for testing general linear model-based hypotheses. When normality does not hold,

nonparametric tests represent an important data-analytic alternative to parametric tests (e.g., Lehmann, 1975, pp. 171-175;

Marascuilo & McSweeney, 1977, p. 89; Zimmerman & Zumbo, 1993). (Other criteria for distinguishing between parametric

and nonparametric tests have been formulated, see, e.g., Kendall & Stuart, 1979, pp. 497-498; Marascuilo & McSweeney,

1977, pp. 3-6). Comparisons of parametric and nonparametric estimators and tests under realistic data conditions, such as

small sample sizes and nonnormal data, have spawned a considerable research literature. Despite its size, this literature is

rather narrow in that its focus has been on relatively simple experimental designs and analyses (e.g., two groups).

Serlin and Harwell (2001) argued that nonparametric methods are under-used in educational research, in part because

educational researchers are not aware of nonparametric tests that are available for complex experimental designs and

analyses, such as factorial designs and multiple regression analyses. They also suggested that many educational researchers

are not aware that such analyses can be performed using existing computer programs, such as SPSS (SPSS Inc., 1999) or

Minitab (Minitab Inc., 2000). Serlin and Harwell concluded that the developmerit of general linear model-based

nonparametric procedures holds great promise for increasing the use of these nonparametric methods in educational

research. They also pointed out that little is known about the behavior of these tests for realistic data conditions.

Serlin and Harwell indicated that three general linear model-based nonparametric procedures are especially promising.

The aligned-rank procedure of Puri and Sen (1971, 1985) tests hypotheses about parameters of interest after eliminating so-

called nuisance parameters. This involves aligning the raw scores using estimates of the nuisance parameters, ranking the

aligned values (residuals), and computing a test statistic that follows a chi-square distribution. The rank-based procedure of

McKean and Hettsmansper (1976) and Hettmansperger and McKean (1977) involves comparing two models (i) a reduced

model containing nuisance parameters is fitted to the raw data and the residuals obtained and ranked (ii) the ranked and

unranked residuals are used to compute a measure of dispersion (iii) steps (i) and (ii) are repeated for a full model containing

the nuisance parameters and the parameters of interest (iv) a test statistic is computed based on the difference in the
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dispersion measures for the reduced and full models. Another promising procedure is the aligned-rank-transform described

in Fawcett and Salter (1984), in which the rank-transform procedure of Conover and Iman (1976) is applied to data that have

been aligned for nuisance parameters. Fawcett and Salter did not consider the aligned-rank-transform in a general linear

model context, but doing so greatly extends the use of this method.

Theoretically, these procedures allow educational researchers to perform nonparametric tests for data obtained from

complex experimental designs and data-analytic models using existing data analysis software. Estimators and tests

associated with the Puri and Sen (1971, 1985) and McKean and Hettmansperger (1976) procedures have similar or identical

properties asymptotically, and there is some evidence that the asymptotic properties of the aligned-rank-transform are similar

to those of Puri and Sen and McKean and Hettmansperger. In any event, the literature on their performance for the less-

than-asymptotic case is quite sparse. For example, available evidence that aligned-rank tests are excellent competitors to

their parametric counterparts for controlling Type I errors at a and showing good statistical power (e.g., Adiche, 1978;

Gorham, 1998; Puri & Sen, 1985) is limited to a small number of designs (e.g., randomized-block) and data analyses.

Similarly, there is evidence that the McKean and Hettmansperger procedure performs reasonably well except when sample

sizes are small, but available work has focused almost exclusively on factorial models and a few distributions. There has

been even less study of the aligned-rank-transform procedure. In short, there is a substantial gap in the nonparametric

literature of the behavior of these nonparametric tests for realistic data conditions. This paper reports the results of a

computer simulation study of their behavior.

We first describe the three procedures and available theoretical and empirical evidence of their behavior. Next we

introduce additional tests suggested by these procedures, and then report the results of a computer simulation study that

investigated the behavior of the tests. We conclude by describing areas in which additional research is needed.

Puri and Sen's Aligned-Rank Test

Puri and Sen (1985, pp. 238-287) described a general linear model-based aligned-rank procedure, originally

introduced by Mehra and Sarangi (1967) for main effects in additive models and extended by Sen (1968), that has several

desirable properties. This procedure, which has its roots in the work of Hodges and Lehmann (1962), assumes that

F,(y) = F(y, Bo B'(x, .)7 )) , i = 1,2,...,N (1)
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underlies the data, where F(y) is a continuous distribution function for the ith subject, y represents the dependent variable,

Bo is an intercept, B is a q x 1 vector of partial regression parameters consisting of q, nuisance parameters in the vector B,

and q2 parameters of interest in B2 (B = B1,B2, q = q, q2), x, is aq x 1 vector of fi x e d and known predictor values for the ith

subject, and .77 is a q x 1 vector of means for the predictor variables.

The Puri and Sen model applies equally to data fitting the correlation model

F1(ylx) = F(y,- Bo B'(x, - )) (2)

in which the predictors are random and F,(ylx) represents the conditional distribution of y given x (Sampson, 1974). The

assumption of continuity of the F, theoretically eliminates the problem of tied scores, but when these occur conventional

practice is to assign midranks. As long as the proportion of ties in the raw data is relatively small the midranks will have a

negligible effect on the test (Lehmann, 1975, p. 18).

To test the hypothesis Ho: B2 = 0, a regression of y on the q, predictors associated with the nuisance parameters is

performed and the resulting residuals are computed using y, x,b1, where b, is a vector of estimated slopes. Either ordinary

least squares (OLS) parameter estimates or rank estimates can be used to generate these residuals. Aubuchon and

Hettmansperger (1984) pointed out that the impact of OLS versus rank estimates on tests in small samples is unknown, but

most authors (e.g., Hettmansperger & McKean, 1998; Puri & Sen, 1985; Adiche, 1984) employ OLS estimates.

Under model assumptions the residuals are free of the effects of the q, nuisance parameters. They are then ranked

(say, It). Next, the linear rank statistics L k (Puri & Sen, 1985, p. 247) are computed for each predictor/dependent variable

pairing for the q2 predictors associated with the regression parameters of interest:

N

L k --= (xik .5e k)[Ri] k 1,2, q2 (3)

Using the original x,k values in equation (3) is an application of what Puri and Sen call the mixed-rank model; ranking the x,k

and using these ranks in the analysis is an application of the pure-rank model. These models lead to estimators and tests with

the same properties, and we focus on the mixed-rank model.

It is clear in equation (3) that the L k are proportional to the slopes, and that centering the predictors produces a
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nonparametric analogue of the least squares normal equations. This proportionality means that researchers do not need to

compute the L k and can instead simply compute slopes with the usual OLS expressions. The L k (or slopes) are highly

efficient compared to the usual least-squares estimators for a normal distribution and are asymptotically normal, clearing the

way for an omnibus test statistic that follows a chi-square distribution (Puri & Sen, 1985, chpt. 7). Another advantage of

the L k is that they are robust compared to the usual least squares estimators that minimize E (y, x,b)'(y, x,b), because

the effect of outliers enters in a linear rather than a quadratic fashion (Draper, 1988).

Puri and Sen (1985, p. 247) proposed an aligned-rank test (PSAR) based on the L k and their asymptotic variances that

can be written in the form

PSAR = (N-1) 0 2,12(1- a ) (4)

where 9 represents a measure of explained variation. The PSAR test is asymptotically distribution-free and is

asymptotically distributed as a chi-square variable with q2 degrees of freedom. (The PSAR test is identical to the test

proposed by Adichie (1978) for the single predictor case). In a regression model 0 equals SSRegression/SSTotal, where

SSRegression = b'2ssx2b2, b2 is a q2 xl vector of estimated slopes for the parameters of interest, ssx2 is a q2 x q2 sum ofcross-

products matrix for the predictors associated with the parameters of interest, and SSTotal = E (R, k )2, where k is the
,=1

overall mean of the ranks. As illustrated in Serlin and Harwell (2001), the PSAR test can easily be computed using existing

software.

The assumptions underlying the PSAR test are that the y, are continuous, independently and identically distributed,

and that the sample size is large enough to ensure the validity of probabilistic inference based on a chi-square distribution.

Under the assumption that the y, follow a normal distribution, the A.R.E. of the PSAR test using ranks compared to the

normal-theory likelihood ratio test is approximately .96, and the A.R.E. of the PSAR test for normally-distributed data with a

normal-scores transformation compared to the likelihood ratio test is one (Puri & Sen, 1985, pp. 251-252).

Although contrasts for the Bk are available (Puri & Sen, 1985, chpt. 6), the PSAR procedure does not permit model-

checking that is common in regression (e.g., studentized statistics). Aligned-rank procedures like PSAR have also been
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criticized on the grounds that their performance is suboptimal in certain settings. For example, Hettmansperger and McKean

(1983) described computer simulation results for a test of parallel slopes in which an aligned.rank test showed inflated Type

I error rates.

Research for the PSAR Test

Studies of the PSAR test have overwhelmingly focused on the factorial case. Akritas (1990) provided some A.R.E.

comparisons between a rank-transform test and the PSAR test for a completely between-subjects factorial design. These

results demonstrated that the A.R.E. of the usual rank-transform F-test was higher than the PSAR test for a normal

distribution, but the A.R.E. of PSAR exceeded that of the rank-transform F-test for logistic and double exponential

distributions. However, Brunner and Dette (1992) argued that the rank transform test considered by Akritas (1990) was not

really a rank- transform test, but instead was a test in which the ranks are divided by an estimated standard deviation and

then substituted into the usual F-test.

Harwell (1991) used a simulation study to examine the behavior of the PSAR test. For a 3 x 2 design with various cell

sizes and distributions, Harwell found that as long as cell sample sizes were at least 8 the PSAR test controlled its Type I

error rate and showed good power compared to the F-test and some nonparametric competitors; for smaller cell sample sizes

the Type I error rates were frequently inflated. Toothaker and Newman (1994) also used a factorial design and found that

the PSAR test had inflated Type I error rates for cell sample sizes of 5; for larger samples sizes the test controlled its error

rate at the nominal level. Other simulation studies investigating the PSAR test include Conover and Iman (1976), Harwell

and Serlin (1994), McSweeney (1967), Salter and Fawcett (1993), and Yohai and Ferretti (1987). The general result of these

studies is that the Type I error rate differed noticeably from the nominal value for small sample sizes, for example, 3-5 cases

per cell in a factorial design, with the test sometimes performing better for certain distributions. For larger sample sizes, the

PSAR test generally did a good job of controlling its Type I error rate and showed good power.

McKean and Hettmansperger's Rank-Based Test

Building on the work of Jaeckel (1972), McKean and Hettmansperger (1976, 1977) described a two-step modeling

procedure in which a sum of products of the ranked and unranked residuals for a reduced model containing nuisance

parameters are compared to a sum of products for the ranked and unranked residuals for a full model containing the
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parameters of interest plus the nuisance parameters. The McKean-Hettmansperger method is similar to the usual least-

squares model-fitting procedure, and supports model-checking procedures and contrasts for the Bk (McKean, Sheather, &

Hettmansperger, 1990).

The test is based on a reduction in residual dispersion (RD) assuming that the model in equation (1) or (2) underlies

the data. McKean and Hettmansperger defined the linear rank statistic

D,(y, x,b) = (y, x,13) [R,w(y, x,b)], (5)

where R," represents Wilcoxon scores generated from the score function yo = (12)1/2(R, /(N+1) -1/2). Use of the Wilcoxon

scores ensures that D,(y, x,b) in equation (5) does not depend on the intercept (Draper, 1988). Hettmansperger and

McKean (1998, p. 163) showed that the statistic in equation (5) is asymptotically unbiased, and if the population distribution

is symmetric it is unbiased for any sample size. They also claimed that their statistic was resistant to the effects of outliers.

However, Puri and Sen (1985, p. 282) noted that the statistic in equation (5) is more susceptible to outliers than the statistic

in equation (2) because of the use of the residuals (y, 30).

Solving equation (5) for the slopes produces a rank analogue of the normal equations, which do not have a closed

solution except in the case of q = 1. Thus, estimating the slopes requires an iterative technique and specialized software

(Hettmansger & McKean, 1998, pp. 184-189). Draper (1988) pointed out that the estimated slopes are not necessarily

unique because they may reflect one of several minima, but indicated that experience has suggested this is rarely a problem.

The result is a fitted rank-based regression model with q slopes that are highly efficient compared to the usual least-squares

estimators for a normal distribution.

The RREGRESS command in Minitab (Minitab Inc., 2000) will estimate the slopes that minimize the expression in

equation (5), as will the interactive RANOVA program maintained by J. McKean at the web address

http://www.stat.wmich.edu/slab/RGLM/index.htm. These slopes have an approximate distribution of N(Bk, r 2 (x'x)-5,

permitting confidence intervals to be constructed about the Bk (Hettmansperger & McKean, 1998, p. 189). If a sample

intercept is desired Aubuchon and Hettmansperger (1984) recommended using the median of the residuals, although if the

distribution of residuals is assumed to be symmetric the median can be estimated using ranks along with the slopes (McKean
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& Hettmansperger, 1978).

To adapt the statistic in equation (5) to test hypotheses McKean and Hettmansperger (1976) employed the following

strategy: Suppose we wish to examine the contribution of x2 to explaining variation in y after taking into account the

contribution of xl . The McKean-Hettmansperger procedure begins by fitting a reduced model of the form 5' ,= bol + xi bito

the y where b01 is an estimated intercept and 5' , represents fitted values. Then D,(y, x,b) in equation (5) is computed for

the reduced model. Next a full model of the form Si ,= bo2+ x1b1 + x2b2 is fitted to the data and the statistic in equation (5) is

computed a second time.

McKean and Hettmansperger (1976) suggested that the rank-based statistic,

MHCHI RDI( /2) (6)

be used to test Ho: B2 = 0. In equation (6), RD = D,(y, xiibl)re and i is an estimate of aduced model Di(yi X21b2))full model

scale parameter r , similar to the least squares parameter a . The McKean-Hettmansperger chi-square test (MHCHI) is then

compared to a chi-square value with q2 degrees of freedom. Computer simulation studies by Hettmansperger and McKean

(1977) and Draper (1981) suggested that the test statistic in equation (6) be modified to the form

MHF = (RD/q2)/( /2) (7)

and compared to a F critical value with q2 and N q 1 degrees of freedom. The McKean-Hettmansperger F (MI-1F) and

MHCHI tests are consistent, asymptotically distribution-free, and have the same A.R.E. under normality as the PSAR test

(McKean & Hettmansperger, 1998, pp. 175-178).

A key feature of the tests in equations (6) and (7) is that they require estimates of r . The parameter r is used in

several settings in nonparametric procedures, for example, in efficiency evaluations and to rescale tests so that they follow a

known distribution (Hettmansperger, 1984, p. 244)). There are various ways to estimate r (Revesz, 1984), but we focus on

the two that are available in the RREGRESS command in Minitab (Minitab Inc., 2000). One is a Lehmann-type estimator

based on the standardized length of a 90% Wilcoxon confidence interval (McKean & Hettmansperger, 1976). The other

method used to estimate r in RREGRESS is based on kernel estimation. (Details of how v was estimated in our simulation

study appear in Appendix A). Unfortunately, there is currently no widely available software that will perform the MIICHII or

9
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MHF tests, but the RD statistic can be calculated with existing regression software in programs such as Minitab (Minitab

Inc., 2000) and SPSS (SPSS Inc., 1999).

Research for the McKean-Hettmansperger Tests

Several computer simulation studies of the behavior of the MI-IF test have been done but apparently all have been

quite limited in scope, almost always involving a focus on Type I error rates for a few conditions in a two-factor design.

McKean and Sievers (1989) reported that the MI-IF test maintained its Type I error rate near the nominal value (with one

exception) in an unbalanced 3x3 design with interaction for two heavy-tailed distributions (logistic, log-Pareto).

Hettmansperger and McKean (1977) examined the MI-IF test for a balanced 3x3 design, small cell sample sizes (3, 5), and a

double-exponential distribution, and reported that the estimated Type I error rates were consistently inflated for small

samples (5-10). Hettmansperger and McKean (1983) performed a computer simulation study that used MI-IF to test for

parallelism of slopes for three groups, sample sizes of 5 or 10, and double-exponential and Cauchy distributions. The MI-1f

test maintained its Type I error rate near the nominal value for all conditions examined, and showed good power compared to

some nonparametric competitors. Other studies of the MEW test include McKean and Hettmansperger (1978), Sievers and

McKean (1986), McKean and Sheather (1991), McKean, Vidmar, and Sievers, (1989), Sievers and McKean, (1986), and

Hettmansperger and McKean (1977). The general finding from these studies was that the MI-1F test maintained its Type I

error rate unless cell sample sizes were quite small, and that the test frequently performed well for heavy-tailed distributions.

Aligned-Rank-Transform Test

The rank-transform procedure introduced by Conover and Iman (1976) requires that scores be ranked and submitted to

a parametric test. This procedure is known to work well for tests in simple designs but les§ well for many complex designs,

for example, factorial designs (Akritas, 1990). Salter and Fawcett (1984) provided a possible solution to this problem for a

randomized block design by suggesting that the rank-transform be applied to data that have been aligned for nuisance

parameters, producing an aligned-rank-transform test. Akritas (1991) pushed this notion further by suggesting that an

aligned-rank-transform test could be applied to subhypotheses of the general linear model. The aligned-rank-transform test

is the same as the PSAR test except that the test statistic is divided by q2 to produce an (approximate) F that is then compared

to a critical F value with q2 and N q 1 degrees of freedom. The test is easily computed with available data analysis
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software.

Research for the Aligned-Rank-Transform Test

Mansouri and Chang (1995) provided theoretical results for the ART test and also reported simulation results for a

factorial design that showed the test controlled its Type I error rate at a . Mansouri (1998) provided the limiting distribution

and A.R.E. of an ART test for a balanced incomplete blocks design. Kepner and Wackerly (1996) provided A.R.E.

comparisons for an ART test for a balanced incomplete repeated measures design using Wilcoxon rank scores, and showed

that the test was particularily attractive for heavy-tailed distributions. Akritas (1993) presented an aligned-rank-transform

test that can be used when data are heteroscedastic.

Salter and Fawcett (1984) performed a computer simulation study that provided evidence that the F distribution could

provide a satisfactory approximation to the distribution of their aligned-rank-transform (ART) test in a randomized block

design. Salter and Fawcett (1993) studied the ART test for a completely between-subjects factorial design with varying

sample sizes and distributions, and found that the test controlled its Type I error rate and showed good power for cell sample

sizes greater than 10. Other studies of the ART test have been reported by Groggel (1987), Harwell and Serlin (1994), and

Gorham (1998). The ART test frequently produced conservative Type I error rates for small samples, with corresponding

low power; for larger sample sizes, however, the test typically performed well.

These results suggest that an ART test may be an important competitor to the PSAR and MHCHI/MI-IF tests.

However, there do not appear to be any studies available of an ART test in hierarchical regression.

Before continuing, it is important to point out that the statistical hypotheses tested by the various nonparametric tests

may differ from one data analysis to another. Recall that the PSAR and MHCHIIMIIF tests test the hypothesis Ho: B2 = 0.

Akritas and Arnold (1994) pointed out that rejection of this Ho does not necessarily imply that the slopes do not equal zero

unless additional assumptions are imposed on the data to ensure that rejection is attributable to nonzero slopes and not to

other distributional characteristics such as scale, skewness, and/or kurtosis.

Akritas and Arnold argued that nonparametric hypotheses should be defined in a way that does not place additional

assumptions on the data, such as by writing Ho in terms of distribution functions. For example, they would replace
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Ho: B2 = 0 with Ho: F,(y) = F(y11(x1 ), with the latter Ho described as fully nonparametric because it does not directly

depend on any parameters (Akritas & Arnold, 1994). Under the null hypothesis, Ho: B2 = 0 and Ho: F,(y) = F(y,l(x, ) are

identical but under HI they differ because the fully nonparametric version does not directly attribute the rejection to nonzero

slope parameters. Following the lead of Puri and Sen (1971, 1985), Adiche (1978), Hettmansperger (1984), and others we

assume that all Of the nonparametric tests test Ho: B2 = 0. Clearly, the data must be examined for evidence supporting the

additional assumptions associated with writing Ho in this fashion (Hettmansperger & McKean, 1998, p. 234).

Serlin-Harwell Aligned-Rank Procedure (SHARP)

An examination of the strategies behind the PSAR, MHCH1, MI-IF, and ART tests suggests other nonparametric tests

that can be constructed to examine the effects of a set of variables after the contribution of other variables has been removed.

Recall that in the PSAR test the first step is to create residuals, which are free of the effects of the nuisance variables, and in

the McKean-Hettmansperger procedure a function of the ranks of residuals from the full and reduced models are compared.

We consider a marriage of these strategies.

Suppose we wish to examine the effects of the predictors x3-x4 on y after the effects of x1-x2 were taken into account.

Suppose also that x1-x2 were used to predict y, the residuals obtained and ranked, and a sum of squares regression

(SSReg reduced model) obtained by using x1-x2 to predict the ranked residuals. Computing SSRegreducedmodel/SSTotal then

produces R'reduced model. Next we predict the ranked residuals using x1-x4 and compute R2full model. The hypothesis Ho: B2 = 0

can be tested using

SHARPCHI = (N-q1-1)[(R2 (8)R2reduced model)] X 2q2full moder R2recluced model)/( I

The (N-q1-1) are the degrees of freedom associated with the sum of squares left over after the ranked residuals are predicted

from the reduced model. Dividing SHARPCHI by q2 produces a statistic with an F distribution with q2 and N-q-1 degrees of

freedom (SHARPF). We note that Mansouri (1996) proposed a similar test of the form

(12[(SSErrorreduced model SSErrorfun malel)/MSECTOrfull model], which follows a chi-square distribution with q2 degrees of freedom.

The various tests have many similarities. The PSAR, MfICHI, and SHARPCHI tests are based on a quadratic form in

the ranks that are asymptotically distributed as a chi-square variable, and can easily be converted to F-tests. In addition, the
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tests produce the same or similar results when applied to data from simpler experimental designs (e.g., a single-factor

design); however, for more complex designs there may be sharp differences in their behavior. There may also be differences

in their behavior for small sample sizes and particular distributional forms.

Simulation Study

As indicated previously, literature on the performance of general linear model-based nonparametric tests has largely

been limited to analyses based on factorial designs. The Type I error and power performance of the PSAR, MHCHI, M1-IF,

ART, SHARPCI-11, and SHARPF tests were examined for realistic data conditions for the hierarchial regression model. We

chose hierarchial regression to compare the nonparametric tests for two reasons. First, this procedure has been regularly

used in educational research, and, second, this study will add to the nonparametrics literature because there is apparently no

evidence of the behavior of these tests for the hierarchial regression model.

We used a computer simulation study to generate data for a hierarchial regression model, which in turn were used to

examine the Type I error and power behavior of the various tests. Although an analytic approach to the behavior of these

tests is preferred because of its generalizability, available theoretical work for the nonparametric general linear model-based

tests investigated in this study, when such results exist, assumes that quite large sample sizes are present. Since large sample

sizes may not occur in practice, it is important to study a test's behavior under realistic conditions, such as small sample sizes

and different distributions (Draper, 1988). We used traditional rank and Wilcoxon scores for the various nonparametric

tests, although we acknowledge that choice of scoring functions is important because different score functions give rise to

estimators and tests with different properties (Draper, 1988; Naranjo & McKean, 1997; Policello & Hettmansperger, 1976).

The hierarchial regression model in the simulation had a total of four predictors: x1-x2 represented the reduced model

and x1-x4 the full model. The statistical null hypothesis tested was Ho: B2 = 0. The design factors of the simulation study

were (a) Distribution of the residuals (normal with skewness ( y1) and kurtosis ( y 2) of 0; chi-square with 8 df ( y = 1, y 2 =

1.5); chi-square with 4 df ( y = 1.41, y 2 = 3); approximate Cauchy ( r = 0, y 2 = 25)), (b) Sample size (N = 20, 40, 60, or

80 representing sample size to number of predictor ratios of 5:1, 10:1, 15:1, and 20:1, respectively, for Type I error rate runs;

N=20, 60 for power runs); (c) p xix2 = p x3x4 = 0.0 or 0.3. In all cases the residuals were homoscedastic and the p
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P x1x4 = p x2x3 p x2x4 0.3.

The selection of sample sizes and distributions was made based on conditions observed in the educational research

literature. The chi-square distributions with 8 and 4 degrees of freedom represent increasingly skewed and kurtic data,

whereas the approximate Cauchy represents an extremely heavily-tailed distribution and is important to examine because of

theoretical and empirical evidence that rank-based tests are often superior to parametric tests for such distributions. The

p xlx2 = p x3x4 correlation of 0 represents the ideal case of no overlapping variation among predictors, whereas p xix3 = p xlx4

P x2x3 = P x2x4 = .30 means there was some shared variation among predictors but not enough to raise concerns about

collinearity. (The same logic guided our selection of p xlx3= p x I x4 = p x2x3 = p x2x4 = .30). Assuming a normal distribution,

the data were generated such that the x1-x2 predictors accounted for 20% of the variance in y; the remaining predictors (x3-x4)

were added to the model and accounted for differing amounts of additional variance in y (expressed through correlations

p yx3 = p yx4) needed to achieve a theoretical power of .70 for varying sample sizes. When the partial correlation Rr3x4 xlx2

equaled 0, rejections of Ho: B2 = 0 counted toward the estimated Type I error rate; for the non-zero case rejections counted

towards the estimated power.

Data Generation

The following steps were taken to generate data with the desired characteristics (1) 5*N scores following a

multivariate-normal distribution were generated using the Kaiser and Dickman (1962) procedure. These values were then

transformed to the various nonnormal distributions following the Vale and Maurelli (1983) procedure, which combines the

Kaiser and Dickman (1962) and Fleishman (1978) procedures. Evidence of the success of the data generation for various

distributions is provided in Table 1 for tWo representative same sizes (N = 20, 60). Details on the computation of

correlations among the xk and y variables used to generate estimated Type I error rates and power values is given in

Appendix B.

Overall, the design of the simulation involved 4 (distribution) x 4 (sample sizes for Type I error rate runs) x 2

(correlations with pairs of predictors) + 4 (distribution) x 2 (sample sizes for power runs) x 2 (correlations with pairs of

predictors) = 48 conditions. Twenty-thousand replications per condition were used to estimate the Type I error rate and
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power of the tests, ensuring that estimates showed little sampling error. For each simulated dataset, the PSAR,

MI-IF, ART, SI-1ARPCHI, SHARPF, and parametric F-tests were calculated and compared to the appropriate critical value

for the null case, producing a proportion of rejections ( ) for each condition studied (In all cases the nominal Type I error

rate was .05). Both the confidence interval and window methods for estimating r described in Appendix B were used. As a

result, each McKean-Hettmansperger test was computed using a confidence interval-based estimate as well as a window-

based estimate. A similar process was followed for the power case (1- ). The simulation program was written in

Microsoft Fortran 4.0.

Results

Type I Error Results

Summaries of the Type I error performance of the tests are displayed in Table 2. The estimated Type I error rates of

the McKean-Hettmansperger tests using window estimates of r were very similar to those produced by the tests based on

confidence interval estimates, and only the latter are presented. Table 2 shows that the MI-1F test using a confidence interval

estimate for 1- (MI-MCI) produced an average estimated Type I error rate closest to the nominal value of .05 (.0517). Next

closest is the SHARPCHI test with an estimated error rate of .0535, followed, in order, by PSAR (.0449), SHARPF (.0392),

MHCHI chi-square test using a confidence interval estimate for r (MHCHICI, .0662), ART (.0334), and the parametric F-

test (.0675). The MI-MCI, SHARPCI-11, and the PSAR tests overall provided satisfactory control of Type I error rates, with

the remaining tests providing somewhat less control. As expected, for a normal distribution the average Type I error rate of

the parametric F-test was closest to the nominal value (.0502), followed by the MHFCI (.0468), SHARPCI-II (.0450),

MHCHICI (.0612), SI-IARPF (.0329), PSAR (.0304), and ART (.0212) tests.

Table 3 reports the estimated Type I error rates for each test by distribution and sample size (Evidence described

below indicated that the correlation within pairs of predictors of 0.0 or .30 did not have much effect on error rates and this

variable was not included in Table 3). Many of the estimated error rates were reasonably close to .05 and indicated that

several tests often showed adequate control of error rates. However, for purposes of recommending one or more of these

tests, we further characterized their control of Type I error rates through the use of four categories: Estimated a values
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within the range .05 ± 2SD [SD = { a (1-a )120,000)]'12) = .0470 to .0530 were considered to represent excellent control;

values between .05 ± 2-3 SD (.0453 to .0469, .0531 to .0546) were characterized as mildly inflated or conservative error

rates that represented good error rate control (identified in Table 3 with an *); values between .05 ± 3-4 SD (.0438 to .0452,

.0547 to .0561) were characterized as mildly to moderately inflated or conservative error rates that represented adequate

control and are indicated by a +; values outside .05 ± 4SDs (< .0438 or > .0561) represented more pronounced inflation or

overly conservative values that reflected unsatisfactory control of error rates and are indicated by a &. These categories

allowed us to further discriminate tests showing excellent control of Type I error rates from those showing less satisfactory

control (Recall that the use of 20,000 replications means that each estimated error rate in Table 3 should be close to that

test's "true" a for the conditions studied).

An examination of Table 3 shows that for a normal distribution the F-test, as expected, produced a values close to .05

regardless of sample size, providing further evidence of the credibility of the simulation. Across the full set of conditions

reported in Table 3, the PSAR, ART, MHCHICI, F, and SHARPF tests showed unsatisfactory control of error rates for more

than half of the conditions studied, with the ART and PSAR tests consistently producing overly conservative values and the

others inflated values. Unlike some previous simulation studies, the McKean-Hettmansperger tests were sensitive to the

Cauchy distribution. The MI-IFCI test, on the other hand, did a good job of controlling Type I error rates, followed by the

SHARPCH1 test which showed adequate control except for the Cauchy distribution. Still, the number of independent

variables in the simulation design means that complex effects in the estimated error rates, such as whether the relationship

between error rates and distribution depends on sample size, may be present but are not immediately discernible in these

data. We next attempted to tease out this information.

Following the advice of Hoaglin and Andrews (1975) to analyze data from simulation studies for evidence of

important patterns, we fitted three-way ANOVA models to the estimated Type I error rates for each test to determine which

effects appeared to be the largest and whether interactions needed to be considered in the interpretation. We first

transformed the a using an arcsin transformation described in Marascuilo and McSweeney (1977, pp. 147-148) that

produces values whose mean and variance are independent of one another, and whose sampling distribution is quickly
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approximated by a normal distribution. Because the design was unreplicated we did not model the three-way interaction,

which allowed within-cell variance estimates to be obtained. Model-checking revealed no strong departures from normality

or homogeneity of variance. Each effect was tested using a nominal Type error rate of .05.

The ANOVA results are summarized in Table 4 in the form of 2 statistics, defined as the sum of squares of a

statistically significant effect over the sum of squares total. We also computed .Nc) 2 statistics (Hays, 1973), which are less

biased than i7 2 statistics as measures of effect size. The iso 2 statistics were similar to the i) 2 values, however, and only the

latter are reported in Table 4. The majority of the two-way interactions were not statistically significant, and among the

handful that were the associated 7 2 never exceeded .048. As a result, our focus was on the main effects, and Table 4 reports

^ 2 values for the Distribution, Correlation Within Pairs of Predictors (x1-x2, x3-x4), and Sample Size effects. The small

2vvithm_pair values provide a rationale for not including this factor in reporting the estimated Type I error rates in Table 3.

Table 4 indicates that the MHFCI (.83) test was quite sensitive to the underlying distribution, along with the PSAR

test (.47). The SHARPF (.08) test, on the other hand, showed noticeably less sensitivity to distribution. The estimated error

rates of several tests (SHARPF, MHCHICI, ART, SHARPCHI) were also sensitive to sample size, which was expected

because several of the tests have been shown to have an asymptotic error rate of a . The fact that the PSAR (.20) test was

less sensitive to sample size was unexpected.,

The sensitivity of the tests to sample size was explored further by re-running the ANOVAs with Sample Size

restricted to the N = 60 or 80 cases, which should reflect the asymptotic behavior of a more than N = 20 or 40. That is, re-

running the ANOVAs with N = 60 or 80 should shrink the 77 2Sample Size values of the tests. The values in parentheses in Table

4 for ij 2Sample Size are for the N = 60 or 80 case and provide evidence that the tests behaved as expected theoretically, withall

nonparametric tests showing substantial to huge decreases in 7 2 when using larger sample sizes.

In sum, the results reported in Tables 2-4 suggest that the parametric F-test be used for normally-distributed data, as

predicted by theory. For the nonnormal distributions studied the performance of the MHFCI test was superior to the others,

followed by the SHARPC1-1 test. The PSAR and ART tests, on the other hand, performed poorly for most conditions

studied. The remaining tests showed a mixed Type I error rate pattern, doing well for some conditions and less well for
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others.

Power Results

Summaries of the overall power performance of the nine tests are displayed in Table 2. For a normal distribution the

average power values were MHCHICI (.7094), F (.6985), MI-IFCI (.6588), SHARPCHI (.6617), and SHARPF (.5653).

Because of the difficulty of interpreting power values when Type I error rates stray from the nominal value (.05), we focus

on conditions in which the tests did not show pronounced inflation ( .0562).

Table 5 reports individual power values (Power rates associated with a > .0562 are indicated with a &). For a normal

distribution, the estimated power values of .6984 and .6909 for the F-test for N = 20 and 60, respectively, provided further

evidence of the credibility of the simulation. For the moderately and strongly skewed/kurtic chi-square distributions the

MHFCI produced the highest power, with values fairly close to .70, followed by the SHARPCHI and SHARPF tests. The

ART and PSAR tests performed poorly, which is not surprising given their conservative Type I error rates for most

conditions. Factorial ANOVAs were not run for the power values because removing those values associated with an inflated

a leaves a substantially unbalanced design.

Summary

The simulation results suggest the following conclusions (1) As predicted by theory, the parametric F-test should be

used for normally-distributed data regardless of sample size. (2) For the nonnormal distributions studied, the McKean-

Hettmansperger F-test using a confidence interval estimate of z produced Type I error rates close to .05 and showed good

power even for smaller sample sizes, followed by the Serlin-Harwell aligned-rank chi-square test. (3) The performance of the

Serlin-Harwell aligned-rank F-test was mixed, while those of the Puri and Sen, aligned-rank-transform, and McKean-

Hettmansperger chi-square test with a confidence interval estimate were generally poor.

On balance, the top-performing test for the nonnormal distributions studied was the McKean-Hettmansperger F-test

using a confidence interval estimate. The Serlin-Harwell aligned-rank chi-square test performed almost as well for many of

the conditions studied, which, combined with the fact that it is easier to compute, makes it an attractive competitor to the

McKean-Hettmansperger test.
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Future Research

This study provides evidence of the behavior of several general linear model-based nonparametric tests in a

hierarchial regression analysis under realistic conditions. Future work might include studying the behavior of the tests for

other statistical procedures and conditions, such as factorial designs with heteroscedastic and nonnormal data. The result of

this work will be the development of a literature that will provide educational researchers with credible nonparametric

alternatives when analyzing data from complex research designs and data analyses.
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Table 1

Evidence of the Success of the Data Generation

Sample
Size Distribution Mean Variance Skewness Kurtosis

(p.1.2=0)
r xix2

(r, xlx3 = .3)

r x1x3

Normal
( 71=0,12=0)

-.0005 1.0006 .0007 .0018 .0001 .3011

N = 20
X 2 (df=8)

(11=1,12=1.5)

-.0001 1.0007 1.002 1.515 -.0022 .3000

x 2 (df=4)

(71=1.41,72=3)

-.0001 .9988 1.412 2.984 -.0062 .2981

Cauchy
( 71=0,72=25)

-.0006 .9985 -.0053 25.144 -.0017 .2998

Normal -.0004 .9999 .0008 -.0019 .0003 .3001

N=60
,y 2 (df=8) -.0001 1.001 1.000 1.503 .0011 .3005

% 2 (df=4) -.0003 .9990 1.412 2.985 .0001 .2991

Cauchy -.0017 1.001 -.0168 24.794 .0002 .3005

Each tabled value represents an average. The mean, variance, skewness, and kurtosis are based on data for N cases for 5
variables (4 predictors and y) across 20,000 replications for both Type I error rate and power conditions. For example, the
first entry in the table of -.00054 is based on 20*5*20,000*2 = 4,000,000 scores. The results for the average correlation

x3x4 were similar to those for F x1,2, and the results for F xix4 and F x2x4 were similar to those for F xIx3.
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Table 4

Effect Size Estimates for ANOVAs of Estimated Type I Error Rates

Test 2
Distribution q

z; 2
Within-Pair

, 2
q Sample Size

F .95 .02 < .01 (not sig.)

PSAR Al,, not sig. .20 (not sig.)

MHCHICI .29 .05 .63 (.09)

MI-IFCI .83 .04 not sig. (not sig.)

ART .28 not sig. .49 (.02)

SHARPC1-11 .46 . 4 .40 (not sig.)

SHARPF .08 .01 .88 (not sig.)

F = parametric F-test, PSAR = Puri and Sen aligned-rank test, MHCHICI = McKean-Hettmansperger chi-square
test with confidence interval estimate of T , MHFCI = McKean-Hettmansperger F test with confidence interval
estimate, ART=Aligned-rank transform, SHARPCHI=Serlin-Harwell modified aligned-rank chi-square test,

SHARPF = Serlin-Harwell modified aligned-rank F-test. Values in parentheses for 1 25ample size are based on

restricting the sample size to N = 60 or 80.
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Appendix A

Estimating r

In this section we briefly describe the r scale parameter, its use in the McKean-Hettmansperger tests, and how it was

estimated in our simulation. Initially it was assumed that the residuals had density f(s) and that '1" was the scale parameter

of this density. Unfortunately, r cannot typically be estimated in a simple fashion because f(s) is unknown.

The essence of the method using the standardized length of a 90% confidence interval to estimate is 2- is to create a

fnmay nf eonfidence intervals Ahnnt a pnint in the center of the density. These confidence levels depend only on the large-

sample Wilcoxon signed-rank null distribution and not on the underlying distribution of the residuals. The lengths of these

confidence intervals are then used to estimate this parameter, say The choice of 1-a is crucial in estimating r

Hettmansperger and McKean (1983) reported that .90 was a suitable choice, McKean and Sievers (1989) suggested that .98

was a suitable choice, and McKean and Sheather (1991) indicated that larger 1- a values are needed when the ratio of

sample size to the number of parameters is less than 5; for ratios greater than 5, a 1-a of .80 appears to be sufficient.

RREGRESS uses .90 by default.

Following Aubuchon and Hettmansperger (1984), ci z--1\11/2(L 95- L 05)42* t 1-a) where L a is a cutpoint (described

below) and t is a critical t-value. First, obtain N residuals after fitting a full model and then compute the N(N+1)/2 pairwise

(Walsh) averages among the residuals. For the Wilcoxon signed-rank statistic T, ,u T = N(N+1)/4 and

0"
2T = MNA-1)(2N-1-1)/24. Next, find C 05 = p T 1.645 cr T, rounded down to the next lower integer. After sorting the

Walsh averages the (C05 + 1 )st = L 05 and (N(N+1)/2-005)th = L 95 values are the confidence interval limits, and the

difference between the limits is the estimated confidence interval length, say S . Hettmansperger and-McKean (1977)

suggested an estimator of the form:

CI = [(N 8 /2)]/[(N-q-1)1/2t95] (Al)

where t 95 is a t-value corresponding to the 95th percentile of a t-distribution with N-q-1 degrees of freedom and

[N/(N-q-1)]1/2 is an adjustment factor. The rationale for the adjustmentiis that the statistic in equation (Al) is biased because

the residuals are correlated, shrinking their variance. A drawback of ci is that this estimator is only consistent if the

residual distribution is symmetric.
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A second method to estimate r uses the kernel density estimation method described in Tapia and Thompson (1978),

Maritz (1995), and Hettmansperger (1984). Once again r is estimated (say, WIN) from the density f( ). The asymptotic

formula for r wiN is

r WIN = 14(12)112 f(s) d e (A2)

= 1/[(12)112 f(s )dF(s )

where J f2(e ) d C = mean density and F(s) is a cumulative distribution function (cde. Kernel estimation essentially uses

a histogram to estimate the density and requires that we use the data twice, once to estimate f( s ), say, f (6 ,), and once to

estimate an empirical cdf, say P (6,).

Based on the formula f( 6 )dF( ) in equation (A2), Hettmansperger (1984) proposed replacing f(s) by a kernel

estimate and estimating F(s ) with P (a ,). Letting i =1/[(12)1/2 2 l((1 2)u2 comes from McKean and Hettmansperger's

use of Wilcoxon scores), define

p*= i(6)dP(6) (A3)

The density f 6 ,) is estimated as

N N

1 (6 i) = N-2 hN-1 E E w[0.1_ ohN],
J.,

(A4)

where w is a density that is symmetric about 0, w( ) is a window, and hN is the window width. This method requires thatthe

window function and the window width be selected. Many authors have pointed out that the choice of window function has

little impact on the results (e.g., Bean & Tsokos, 1980), and Minitab's RREGRESS command uses a uniform density. The

choice of the window width hN, on the other hand, is crucial, and is similar to the choice of the confidence level in the

confidence interval method. Large window widths lead to density estimates with small variance but substantial bias,

whereas small window widths lead to density estimates with larger variance but smaller bias (Maritz, 1995, p. 28). Several

authors have argued that minimizing bias is the more important of the two (e.g., Aubuchon & Hettmansperger, 1984; Bean &
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Tsokos, 1980).

Aubuchon and Hettmansperger (1984) modified equation (A4) to reduce bias, producing

* = 1/[N k 1+ 1/[(N(N-1) hN] w[(r, rj)/hN]
10 j

(A5)

where k =4.1078S. (8 = sample interquartile range computed on the full model residuals), hN = k N-112, and

Ew[(r, rJ)/hN] requires that we compute the N(N-1) possible pairwise differences among the full model residuals and
10 j

assign 1 if a pairwise difference divided by hN is between -.50 and -.50, and 0 otherwise. (Aubuchon and Hettmansperger

(1984) showed that using equation (A5) rather than (A4) reduces the bias in estimating r from 0(N-2/3) to O(NI)). The use

of equation (A5) requires specifying the scale of the underlying distribution as well as its shape. RREGRESS assumes that

the distribution is normal, which is where 4.1078 comes from (see Hettmansperger, 1984, p. 249). Finally,

INT = 1/[(12)I/2P *1 (A6)

An advantage of this method is that estimates of r vim are consistent without assuming symmetry of the underlying

distribution. However, the statistic in equation (A6) is still biased because the residuals are correlated. Various corrections

have been proposed, and the RREGRESS command uses [NI(N-q-1)]1/2. The confidence interval (CI) and window (WIN)

estimators are (asymptotically) equally accurate but show differences in small sample performance (Draper, 1988). We

computed both in our simulation study for each McKean and Hettmansperger test.
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Ho True

Appendix B

Generating Data To Satisfy the Type I Error and Power Conditions

The calculations were based on inverting the general correlation matrix

Y X1

P Yxi

X2

P yx2

X3

P Yx3

X4

13. yx4

Xt 1 p xlx2 p xlx3 p xlx4

P = X2

X3

1 p x2x3

1

p x2x3

p x3x4

X4

Here correlations with y appear in the first row and column, correlations for the reduced set of predictors (x1-x2) in rows and

columns 2 and 3, and correlations for the x3-x4 predictors in rows and columns 4 and 5. Inverting this matrix results in the

element in the first row and column, W111=11(1-R2) in predicting y from the other variables in the matrix. We began with the

reduced model matrix with p xix2 = p x3x4 = 0,

p reduced = p yxl

P yx2

P rd P Yx2

1 0

0

and the element W111 is 1/(1-2 p2y1). Solving for p 2yl yields p2y1 =.1 and p yx,=(.1)112(we drop the subscripts on p

involving x from here on since, for example, p yxi = p y2). Thus, the correlation between y and x1 and between y and x2

when the correlation between x1 and x2 (and between x3 and x4) equals zero was (.1)1/2=.3162. Repeating this process for
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p xlx2 = p x3x4 = .3, the element W111 is .91/(.91-1.4 p2 yxl). Solving, we get p yx1= (.13)112 , so the correlation between y and

xi and between y and x2 when the correlation between x1 and x2 (and between x3 and x4) equals 0.3 was (.13)12=.3605.

When the correlation between xl and x2 (and between x3 and x4) equals zero and the reduced model accounts for

R=.2, under the null hypothesis, the full model must also account for R2=2. For the matrix (assuming p xix2= p x3x4 = 0),

xi X2 X3 x4

.3162 .3162 Pyx rt
Yx

xl .3162 1 0 .3 .3

x2 .3162 0 1 .3 .3

x3 Pyx .3 1 0

x4 yx .3 0 1

.64
the element W111 is , and so R2 = .2 + (p 611)2 For the case when Ho is

.8(.64) 2(p, .6V1)2 .64
YX

true, set p yx (.6)(.3162). Repeating this for the case for p xix2= p x3x4 = .30 produces the element 11.111=

.91
.637(.931)

[
.728(.637)(.931) 1.27(.9 lp .42-\/.13)2

and so

.42
R2 = .2 +

1.27 (.91p .42V.13)2. For Ho true set pyx = .13 = .1664.
.91(.637)(.931) .91

Ho False

Assuming the x,k are fixed, the above results can be used to calculate the correlations needed to generate a power of

0.7. In each of the R2 formulae, we see that part of the change in R2depends on the correlation between y and x3 and

between y and x4. What is needed is to compute the change in R-square (over the reduced model R-square of 0.2) needed to
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yield a power of 0.7 (The noncentrality parameter here is NAR 2 R 2 ). The NCSSCALC program (downloadable at

http://www.ncss.com/download.html) was used to calculate the required change in R2 (just to make sure the results were

replicated using the G-Power program downloadable at http://www.psycho.uni-duesseldorfide/aap/projects/gpower/). The

above formulas were then used to solve for pyx . For p xix2= p x3x4 = 0 and N=20 the resulting correlation matrix was:

1 Aa -II .476386 .4763861

V1. 1 0 0.3 0.3

-Na 0 1 0.3 0.3

.476386 0.3 0.3 1 0

\.476386 0.3 0.3 0 1

However, an adjustment of pyx was needed because the xi', were random, meaning that the F follows a confluent

hypergeometric distribution. The result of the adjustment was that pyx = .476386 was changed to .497 to generate the

desired power of 0.7 under these conditions. For r- xlx2 = p x3x4 = .30 and N=20, the resulting correlation matrix was:

1 V.ff jI .529404 .529404\

V.13

.529404

y529404

1 0.3 0.3 0.3

0.3 1 0.3 0.3

0.3 0.3 1 0.3

0.3 0.3 0.3 1

The adjustment changed pyx = .529404 to .559. For pxix2= p x3x4 = .30 and N=60, the resulting correlation matrix was:
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(
1 IJII

Ar.--ff 1

-NM 0.3

.387814 0.3

.387814 0.3

JI
0.3

1

0.3

0.3

.387814 .387814\

0.3 0.3

0.3 0.3

1 0.3

0.3 1

The adjustment changed pyx = .387814 to .389.
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